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An attempt is made to explain the formation of vortices in free boundary layers 
by means of stability theory using a hyperbolic-tangent velocity profile. The 
vorticity distribution of the disturbed flow, as obtained by the inviscid linearized 
stability theory, is discussed. The path lines of particles which are initially placed 
along straight lines parallel to the z-axis are calculated. Lines connecting the 
positions of these particles give an impression of the instant shape of the disturbed 
flow. With increasing time the boundary layer becomes thinner in certain 
regions and thicker in others. A special line-originally positioned at the critical 
layer-shows in the thicker region a tendency to roll up. Also extrema of the 
vorticity are located there. Finally, these results are compared with those which 
can be expected from the non-linear Helmholtz equation. Disagreement is 
found in the neighbourhood of the critical layer. Using the non-linear stability 
theory of Stuart up to the third-order terms, the vorticity distribution shows 
the tendency expected from the non-linear equation. 

1. Introduction 
The boundary layers of jets and wakes are not bounded by walls and are there- 

fore called free boundary layers. Considering the laminar-turbulent transition, 
i t  is known from smoke experiments (see, for instance, Wille 1963) that the free 
laminar boundary layer can roll up into vortices and turbulence starts where 
the vortices decay. These vortices, however, are certainly not of the well-known 
potential type, but as real vortices they may be defined by the existence of a local 
concentration of vorticity as, for instance, is found in a Hamel-Oseen vortex. 
For large Reynolds numbers the flow in a free boundary layer is approximately 
parallel. Therefore results obtained for parallel flows may then be applicable for 
free boundary layers. 

The problem of vortex formation was first considered by Helmholtz (1868). He 
came to the conclusion that a disturbed free boundary layer would roll up. Later 
on, Lord Rayleigh (1880) was able to show that a velocity profile with an inflexion 
point is unstable to certain small wavy disturbances, if the viscosity is neglected. 
Lin (1955) gave physical explanations for this behaviour: a disturbance of the 
vorticity which corresponds to a velocity profile with an inflexion point can grow 
in time as a consequence of the mutual induction of all vortex elements. This is 
an inviscid effect, and the presence of viscosity will only be of damping influence. 
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Now, free boundary layer profiles have always one or more inflexion points. 
Thus, for large Reynolds numbers, amplified disturbances can always exist, 
and, if they exist, we can suppose after Helmholtz that the free boundary layer 
should roll up. Furthermore, if vortices of the kind described above are formed 
during the rolling-up process, we have to expect concentrations of vorticity 
there. 

To prove this hypothesis about the formation of vortices in free boundary 
layers, some steps have already been taken. First, theoretical and experimental 
investigations by Lessen (1950), by Esch (1957), Tatsumi & Kakutani (1958), 
as well as by Sato (1960), by Schade & Michalke (1962) and by Michalke & Wille 
(1964) confirmed that for large Reynolds numbers the instability properties of 
free boundary layers are not noticeably affected by viscosity. Domm (1956) 
stated that some properties of the laminar-turbulent transition may be explained 
by the existence of vortices. 

Benney ( 1961) investigated the influence of three-dimensional disturbances 
on the instability of a shear layer. He found a formation of longitudinal vortices, 
which become important in the non-linear range, even though his calculations 
were only performed for the neutral case. Such longitudinal vortex structure, 
however, has been found in wall boundary layers, for instance, on a flat plate 
by Klebanoff & Tidstrom (1958), but in free boundary layers the three-dimen- 
sional disturbances apparently become important only in the last stages of the 
transition process, as can be seen, for instance, on figure 27 of Wille (1963), 
in the free boundary layer of an axisymmetric jet. 

Concerning the rolling-up of free boundary layers, only a few investigations 
are yet known. Rosenhead (1931), Birkhoff & Fisher (1959) as well as Hama & 
Burke (1960) calculated the rolling-up of a vortex sheet, which is the simplest 
case of a free-boundary-layer profile, approximately. Abernathy & Kronauer 
(1962), who also took vortex sheets, investigated the development of the Khrmin 
vortex street in a wake. The rolling-up process of the linear shear layer, which is 
equivalent to a finite thick vortex sheet, was calculated approximately by 
Michalke (1963). In this case the initial disturbance of the vorticity was calcu- 
lated by means of the inviscid linearized stability theory. The common basis 
of all the calculations concerning the rolling-up process is given by the method of 
replacing the continuously distributed vorticity of the disturbed velocity 
profile by a certain distribution of individual potential vortices, the motion of 
which is calculated by means of the induction law. Particularly in the last paper, 
the temporal development of the disturbed linear shear layer shows clearly the 
rolling-up process with a simultaneous concentration of the individual vortices 
in certain regions of the flow. Thus the formation of vortices in a disturbed free 
boundary layer is confirmed by the results in the framework of the simplifications 
used. 

The results for the rolling-up obtained in this crude way, may, however, be 
far from giving a description of the real process, as the continuous vorticity 
distribution is approximated only by discrete potential vortices. Furthermore, 
the assumed velocity profiles-a ‘jump’ profile in the case of the vortex sheet 
and a ‘ broken-line’ profile in the case of the linear shear layer-cannot be realized 
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experimentally. Therefore it seems to be of some importance to use a steadily 
curved velocity profile for theoretical investigations. Very simple in the analy- 
tical sense is the hyperbolic-tangent velocity profile. Using this profile in the 
following analysis, the vortex formation in a free boundary layer will be investi- 
gated according to stability theory. 

2. The vorticity distribution of the disturbed hyperbolic-tangent 
velocity profile 

The basic flow is assumed to be parallel and therefore only one velocity com- 
ponent U(y) in the basic flow direction z exists. The y-axis is perpendicular to the 
z-axis. The basic velocity profile is given in dimensionless form by 

U ( y )  = 0.5 [ 1 + tanh y]. (1) 
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FIUWRE 1. Lines of constant vorticity of the disturbed hyperbolic-tangent velocity profile 
for the wave-number a = 0.4446 of maximum amplification and a = 1 of the neutral 
disturbance at the time t = 0 and a disturbance magnitude 6 = 0.2 according to the 
inviscid linearized stability theory after Michalke (1964). 
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The corresponding undisturbed vorticity distribution Sl,(y) for this velocity 
profile is defined by 

dU 
Q0(y) = - - = - 0-5sechZy. 

dy 

Stability calculations for the hyperbolic-tangent velocity profile according 
to the linearized theory were performed numerically by Betchov & 8zewczyk 
(1963) as well as by Michalke (1964). Using the computed eigenvalues and 
eigenfunctions for the inviscid case, the physical properties of the disturbed flow 
were discussed in the latter paper. It was shown there that from a study of the 
streamlines no essential insight into the instability mechanism and the vortex 
formation is gained. For this reason the vorticity distribution of the disturbed 
flow was also calculated and discussed in that paper. Figure 1 shows lines of 
constant vorticity for the neutral disturbance (wave-number a = 1) and for 
the most strongly amplified disturbance (a = 0.4446). The disturbance magni- 
tude c which can be chosen freely was assumed as relatively large in order to 
show the phenomenon more clearly. It is evident that a qualitative distinction 
between the neutral and the amplified disturbance exists. For the most strongly 
amplified disturbance two maxima of I RI are found within a disturbance wave- 
length A, but only one maximum for the neutral disturbance. 

If we interpret these concentrations of vorticity as 'vortices' in the above 
mentioned sense, it is obvious that in the neutral case the arrangement of vor- 
ticity corresponds essentially to a one-row vortex street. With respect to the 
mutual induction this arrangement is an equilibrium state of motion. 

Yet in the case of amplified disturbances the arrangement of vorticity corre- 
sponds to two parallel vortex rows which are displaced relative to one another. 
Therefore an equilibrium state of motion exists no more. Both 'elementary 
vortices' within a wavelength will obviously have the tendency to rotate around 
their common centre or, taking the transport velocity into account, to slip 
around each other. 

3. Temporal development of the disturbed flow 
Another point of interest is the temporal development of the disturbed flow. 

The velocity field of the disturbed flow according to the inviscid linearized 
stability theory can be evaluated by means of the complex eigenfunctions 
&y) which are calculated by Michalke (1964). Thus we obtain for the velocity 
component in the basic flow direction 

u = U(y) + se"Q5i(y) cos a(z - c,t) - #&) sin a(z - c,t)], 

v = €ill eEcdt[$,(y) sin a(z  - c f )  + #&y) cos a(z - c,t)]. 

(3) 

and the component normal to this 

(4) 

8 is again the disturbance magnitude, 01 the wave-number of the disturbance, 
c, its phase velocity, and aci the disturbance growth rate. $,(y) and #&) denote 
the real and imaginary part of the complex eigenfunction. 
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Now, since the velocity field according to the inviscid linearized theory is 
determined, we can calculate the path line of any particle of the disturbed flow. 
The differential equation governing the motion of a particle is given by 

( 5 )  } 
dx/dt = " ( t ) ,  Y(t), t l ,  

dYPt = vlz(t), Y(t), tl, 
where the right-hand sides are given by (3) and (4). x ( t )  and y(t)-denote the posi- 
tions of the particle at the time t. 

It may be of special interest to obtain the positions of particles which were 
placed along straight lines parallel to the x-axis in the initial state. Lines 
connecting the positions of these particles at  a later time are special 'material 
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FIGURE 2. Temporal development of the disturbed hyperbolic-tangent velocity profile 
according to the inviscid linearized stability. Wave-number u = 0.4446 of maximum 
amplification; initial disturbance magnitude E = 0.01; modified time 7 = ac,t. 

lines' which may be called here simply 'limit lines', because all particles which 
were once inside a region limited by two different limit lines remain inside this 
region at all times. Experimentally the temporal development of a free boundary 
layer can be studied if a flow region limited by two different limit lines is visualized 
by smoke or dye. 

For the most strongly amplified disturbance of the hyperbolic-tangent 
velocity profile, the temporal development of three limit lines was obtained by 
calculating the path lines of the particles. For this case the disturbance wave- 
number is a: = 0.4446, the growth rate a:ci = 0.09485, and the phase velocity 
C, = 0.5. 

Strictly the calculation should start at the time t = - 00, where the disturbance 
tends to zero and only the basic flow remains. But, because of computational 
reasons, the calculation has to start at a finite time t = to. Therefore the effective 
disturbance magnitude at this time t = to has the value eexp(acit0) < 1, if E is 
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small enough so that the flow field differs only slightly from the undisturbed basic 
flow. Since c can be chosen freely, we can assume to = 0. 

In  the initial state the particles were positioned on the straight lines y = 1, 
y = 0 and y = - 1, each having 13 particles per wavelength A. The disturbance 
magnitude was chosen to be e = 0.01. Figure 2 shows the result of the computa- 
tion. The positions of the particles at the modified times 

T = ac,t (6) 

are reduced to one wavelength. The particle originally first in each row is marked 
by a circle. It is obvious that with increasing time 7 the boundary layer becomes 
thinner in certain regions and thicker in others. Furthermore, the medial limit 
line shows a tendency to roll up with a simultaneous concentration of particles. 
We have, therefore, to suppose that, if vortices are formedin free boundary layers, 
they should occur in the thicker part of the disturbed layer. Then a concentra- 
tion of vorticity should be expected there. By comparing the vorticity distribu- 
tion with the plot of the limit lines at the modified time T = 7.0210, for instance, 
where sexp (ci7/c,.) = 0.2, we see from figure 3 that there are, in fact, maximum 
values of vorticity in these parts of the free boundary layer. 

4. Comparison between the results of the linearized and the non- 
linear theory 

We must, however, keep in mind that for these relatively large times the 
assumptions of the linearized stability theory will surely no longer be valid. 
The instantaneous disturbance magnitude c: exp (mi t )  increases exponentially 
in time and will reach high values quickly. At T = 7.0210 the instantaneous 
disturbance magnitude becomes 20 times the initial disturbance magnitude. 
Therefore the non-linear equations should be used. 

In  the inviscid two-dimensional case the vorticity transport is described by 
the Helmholtz equation 

do an as1 an 
dt at 8% ay 
_ -  - -+u-+v- = 0. (7) 

From this equation it follows that, if a particle is moving along its path line, its 
vorticity remains constant for all times. For the undisturbed basic flow, however, 
the lines of constant vorticity Q = a, = constant are straight lines parallel to 
the x-axis and, therefore, they are identical with the chosen limit lines. In  the 
inviscid case the limit lines also remain identical with the lines of constant vor- 
ticity for all times. Furthermore, if the vorticity of the undisturbed flow has 
an extremal value, it follows from the Helmholtz equation that this extremum 
of vorticity cannot be exceeded a t  any time. Thus we have a good criterion to 
examine the validity of the linearized theory. 

In  our calculations the limit lines initially positioned at y = & 1 are identical 
with the lines s1, = -0.21 of the undisturbed vorticity, even though, because 
of the finite disturbance magnitude cexp (acito) in the initial st9te of the com- 
putation, the vorticity along these lines is not exactly constant, but changes in 
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order of magnitude of E .  The third limit line initially positioned at y = 0 corre- 
sponds to the line of extremal vorticity 52, = - 0.5, but for the same reason it 
does not remain exactly a line of extremal vorticity in the initial state of the 
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FIGURE 3. Comparison between the vorticity distribution and the limit lines of the 
disturbed hyperbolic-tangent velocity profile (linearized theory). Disturbance wave- 
number u = 0.4446; initial disturbance magnitude E = 0.01. 
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FIGURE 4. Comparison between the lines of constant vorticity and the limit lines of the 
disturbed hyperbolic-tangent velocity profile (linearized theory). Disturbance wave- 
number u = 0-4446; initial disturbance magnitude E = 0.01. 

computation. This influence, however, may be neglected, because E is sufficiently 
small. Looking at figure 4 we find for r = 5.3965 where eexp ( w i t )  = 0.1 both 
the outer limit lines show good agreement with the lines of constant vorticity 
i-2 = - 0.20. From this it follows that in these regions of the flow the linearized 
theory seems to be sufficient. Concerning the limit line initially positioned at the 
critical layer y = 0 we see, however, that the corresponding line of vorticity 
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Q = - 0.5 is split into two lines with a region of higher vorticity between them. 
Here we also find disagreement with the non-linear theory, as stated already by 
Lin (1958). 

However, we are now in the position to describe how the vorticity distribution 
due to the non-linear development should look. The limit line placed initially in 
the critical layer must remain identical with the line of extremal vorticity, while 
the vorticity distribution outside the critical layer should be similar'to that found 
by the linearized theory. 
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FIGURE 5. The vorticity distribution of the disturbed hyperbolic-tangent velocity profile 
due to the non-linear stability theory (third-order approximation) compared with that due 
to the linearized theory for maximum amplification (a = 0.4446) ; disturbance magnitude 
IAl = 0.1. - , Third-order approximation; - - - - , first-order approximation. 

Obviously, a better agreement with the non-linear development must be 
expected with application of the non-linear stability theory according to Stuart 
(1961). Taking more and more terms of his series into account, the distance 
between both lines of initially extremal vorticity must decrease and, finally, 
both lines have to coalesce to a single one which has to be identical with the 
corresponding limit line. This tendency has also been confirmed by using Stuart's 
series up to the third-order terms (see appendix). Figure 5 shows the vorticity 
distribution as obtained in this way in comparison with the one due to the linear- 
ized theory. We see that, in fact, both lines of vorticity Q = - 0.5 are approaching 
eachother. On the other hand, it is evident that in theinviscid case the third-order 
approximation is not sufficient in every respect for this instantaneous distur- 
bance magnitude IAI = 0.1. Therefore we may suppose that the convergence 
of Stuart's series is not very good in the inviscid case. 

Finally, let us speculate how the vorticity distribution of a fully-developed 
vartex in a free boundary layer might look. It is assumed that the lines of constant 
vorticity will roll up in the inviscid case as in figure 6.  The vorticity distribution 
across a vortex will be as shown below a t  the right and the distribution between 
two consecutive vortices as shown at the left. We see that we may find a con- 
centration of vorticity in the vortex without an increase of the extremal value of 
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the vorticity Q,,,. Taking the viscosity into account the peaks and valleys of the 
vorticity in and between the vortices may be smoothed, as is shown by the 
dashed line, especially in the regions of large gradient changes. Thus we have to 
expect a vorticity distribution in the vortex which is similar to that of the Hamel- 
Oseen vortex. This is well confirmed by the computation of Amsden & Harlow 
(1964) who dealt with the non-linear development of a viscous shear layer by 
solving the viscous non-linear equations by a difference method. This may also 
be an explanation for the good agreement with experimental results as found by 
Timme (1957) and by Berger (1964) who calculated the flow pattern of a 
KOrm&n vortex street using Hamel-Oseen vortices for an approximation. 
Summarizing. we can say that the vortex formation in free boundary layers may 
be well described by means of the stability theory. 

Vorticity distribution 
I between two vortices 
I 

I 
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Under the influence 

FIGURE 6. Vorticity distribution expected in a free boundary layer during 
rolling-up (inviscid non-linear theory). 

Appendix. Application of Stuart’s non-linear stability theory 
The non-linear stability theory by Stuart (1961) has been applied to the tanh 

velocity profile. To simplify the writing of the formulae, the method has been 
modified somewhat by using the vorticity transport equation. For viscous 
two-dimensional flow this equation is 

where R denotes the Reynolds number. 
a ( x ,  y, t )  the z-component of the vorticity defined by 

$(x, y, t )  is the stream function and 

curl c = ( O , O ,  a>, 
where 

is the velocity vector. From (9) the vorticity follows as 
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According to the method of Stuart, we look for a solution of the partial- 
differential-equation system (8) and (11) by using Fourier-series in x-direction: 

1 "  
{$,(y, t )  e v i a +  $,(y, t )  e-viaz), (12) 

$, = A[#,+ JA12$11)+..., 
$, = ..., R, = A,[@,+ ..., 

R, = A[@,+ IAI2~i1)+ ..., 

1 "  
{Rv(y, t )  eviors + fiv(y, t )  e-viaas). (13) 

The functions $, and Q, are generally complex and the symbol N denotes a 
complex conjugate. 

By substituting (12) and (13) in (8) and (1 1) and by separation of the harmonic 
components, we obtain in a way similar to Watson's (1960) for v = 0 

no = - azp,/ay? (15) 

The zero-order terms are marked by a bar, as they represent mean values of the 
flow with respect to x. For v 2 1 we obtain 

if the complex time-dependent amplitude function A = A(t)  satisfies the dif- 
ferential equation 

and if all the other functions depend only on y. U ( y )  denotes the given basic 
velocity profile and R, = - U' the corresponding vorticity distribution. a, is the 
so-called first Landau constant. 

Inserting (20) into (14) to (17) we can arrange the terms in powers of A .  With 
the conventional notation 

dA/dt = A[ao+a,lA12+ ...I, (21) 

(22) a, = - iac = - ia(c, + iCJ, 
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we obtain the following ordinary differential equations at A(t)  

i 
aR (u-c)w1+u"$,+-(w;-a2w1) = 0, 

381 

at IAI2 

(23) 

(24) 

i [U - c] w3+ U"$3 + 3aR [wi - 9a2w3] = 4 [$,w;1 - wl$;+ 2($,w; - OJ $71 
'\ (27) 

w3 = - v i  - 9av31,  I 
and so on. Equation (23) represents the Orr-Sommerfeld equation of the linear- 
ized stability theory. 

Taking terms up to the third order in A into account the solution of equation 
(21) can be found in a closed form. With the initial value 

A(0)  = 8 (28) 

as a measure for the disturbance magnitude, the integration yields for a,, = 0 

e-iacl 
A( t )  = 

,@ + ( - al,/aci) €2 (ezac i f -  l)} ' 

For the special case ci = 0 the solution becomes 

(29) 

Using only the fist-order terms in A ,  i.e. a, = 0, we obtain the result of the linear- 
ized stability theory: lim A(t )  = e e - i d .  

For the present problem of the hyperbolic-tangent velocity profile (l), the solu- 
tions of (23) have been computed numerically for the inviscid case (R-1 = 0) 
by Michalke (1964). By these results the remaining equations (24) to (27) can 
be solved successively as a boundary-value problem. The boundary values are in 
this case determined by the conditions that the disturbances $"(y, t )  must vanish 

(31) 
a, -0 
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for y + k 00. The calculation was performed numerically with a LGP 30 com- 
puter up to the third-order terms for the most strongly amplified disturbance and 
R- l=  0. Then the disturbance wave-number is 

a = 0.4446, 
and the eigenvalue c = 0.5 + 0-2133i. 

(32) 

(33) 

The up to now undetermined .first Landau constant a, remains undetermined 
for amplified disturbances with ct =/= 0. Since cQ =/= c, the homogeneous equation 
(26) is different from (23) and has no solution satisfying the boundary conditions. 
Thus for every value of a, a solution of the inhomogeneous equation (26) can be 
found which satisfies the boundary conditions. Only, if ci is zero, we have 
c3 = c and a solution of (26) satisfying the boundary conditions can only be 
obtained for a special value of a,. Therefore the Landau constant a, calculated 
for the neutral case is believed to be significant for amplified disturbances too. 
The value of this constant for the tanh velocity profile was found by Schade 

(34) 
(1964) to be 

Knowing all terms of (13) up to v = 3, the lines of constant vorticity have been 
computed with the assumption IA I = 0.1. The results are shown in figure 6. 

a, = a,, = - 1613~.  
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